The BESSEL library V1.2

Steven Ahlig

The BESSEL library provides various special functions:

Bessel functions of the first and of the second kind
Jv(x) and Y, (x) of integer order v and for real argu-
ments x.

modified Bessel functions I,(x) and K, (x) of integer
order v and for real arguments x.

the incomplete gamma function P(a,x) for real a and
X.

the error function erf(x) for real x.

the beta function B(a,b) for real a,b

the incomplete beta function I (a,b) for real a,b,x
associated Legendre polynomials Py, (x) for real x
spherical harmonics Y,(0, ¢) for real arguments 0, ¢



1. BESSEL FUNCTIONS

The Bessel differential equation (DEQ) can be written in the form

@u x dx X2
This is a linear DEQ), i.e. given that u;(x) and uy(x) are solutions of (1) it
follows that also ocuq(x) + Bux(x) with «,p € R is a solution; the solutions
of (1) thus form a vector space.
The Bessel functions of the first and of the second kind, J.(x) and Y, (x),
are solutions of (1) and are defined as follows
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These solutions are linear independent for noninteger v > 0 and form a basis
of the vector space of solutions of (1). However, J,(x) and Y,(x) are linear
dependent for v € N. A quite tedious calculation reveals that
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with s, = Z % and vy = exp(
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is the 2nd solution which is linear independent form J.(x) for v € N.
Considering the Bessel functions Jy(x) and Y,(x) for purely imaginary

arguments x one arrives at the modified Bessel functions

L (x) = (1))~ (ix) ()
Ky(x) = 204 (T (1) + ¥4 (ix)) (6)
These functions are solutions of the DEQ
a2 1d 2
@u(x) + ;&u(x) — (1 + ;/—2> u(x)=0 . (7N

Bessel functions have countless applications in all areas of physics and
engineering. See, e.g., [1] for applications to boundary value problems in
classical electrodynamics and [2] for a ’scholarly work’ on the theory of
Bessel functions.
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The subroutines BESJ, BESY, BESI and BESK check the number and
the type of their arguments. Furthermore they do check whether the order
n is a positive integer or zero.

The algorithms are taken from [3].

BESJ returns the value of J,(x) for n € N and x € R. The stack diagram is

2:mn - 2:
1:x BES] 1: Ja(x)

BESY returns the value of Y, ,(x) for n € N and x € R, x > 0. The stack
diagram is
2:n ; 2:
1:x BESY 1: Ya(x)

Yn(0) = —c0 is approximated by Y,,(0) = —MAXREAL.
It is checked whether x > 0.

BESI returns the value of I,,(x) for n € N and x € R. The stack diagram is

2:n ; 2:
1:x BESI 1: Ta(x)

BESK returns the value of K(x) for n € N and x € R, x > 0. The stack
diagram is
2:n ; 2:
1:x BESK 1: Kn(x)

Kn(0) = oo is approximated by K,,(0) = MAXREAL.
It is checked whether x > 0.

*

The accuracy of the routines may be estimated with the help of the tables
1, 2 and 3 which compare the results of BES] to corresponding values of
Jn(x). BESY,BESI and BESK give results of similar accuracy.

2. INcoMPLETE GAMMA FUNCTION

The incomplete gamma function P is defined by
‘I X
P(a,x) = —J dtexp(—t)t* ' (a>0) 8
Fla) ), dteP (8)
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where I is the 'ordinary’ gamma function

o0
F(a):J dtexp(—t)t*!' = T(a+1)=a-T(a) . (9)
0
Note that I' is a built-in function of the HP49, it is merged with the factorial
command: I'(x)=(x—1)!.

The incomplete gamma function (8) encompasses a number of other spe-
cial functions. A quite probably incomplete list is:

e The error function

2 X

erf(x) = —J dt exp(—t2) (10)
VT o

is obtained from the incomplete gamma function P(a,x) by the pa-

rameter choice a = 1/2 and the replacement x — x?, i.e.

erf(x) = sign(x) - P <%,x2> . (11)

e The x2-probability function is used to quantify the goodness of fit and

it is found equal to
2
v X
P(=, % 12

where v is an integer, which stands for the number of degrees of free-
dom and x? is a measure for the difference of two models or data-
sets. The quantity 1 — P(v/2,x?/2) gives the probability that the
observed value of chi-square will exceed the value x? by chance even
for a correct model. Note that 1 — P(v/2,x%/2) for integer v is a
built-in function of the HP49, it is called UTPC, more explicitly:
UTPC(v,x?) = 1 —P(v/2,%x%/2). UTPC does accept noninteger v
as argument, however the results of UTPC are wrong for v not an
integer.

e The cumulative Poisson probability function Py(< k) depends on two
variables, x and k. It gives the probability that the number of Poisson
random events occuring will be between 0 and k — 1 inclusive, if the
expected mean number is x. One finds Py(< k) =1 — P(k, x).

*
The subroutine GAMP checks the number and the type of its arguments

as well as the condition a > 0. GAMP is based on an algorithm which is
taken from [3] and it is used according to the stack diagram

2:a , 2:
1:x GAMP 1: P(a,x)
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The accuracy of GAMP is illustrated by the tables 4, 5 and 6 where the
results of 1 —GAMP(v/2,x%/2) are compared to corresponding values of the
x2-probability function, which are taken from [4]. See also table 7 which
compares GAMP(1/2,x?) to accurate values of the error function.

3. THE ERROR FUNCTION

The connection between the error function

erf(x) = %{ J: dt exp(—t?) (13)

and the incomplete gamma function has been emphasized in the last section.
And with T'(1/2) = /7t it is easy to convince oneself that indeed erf(x) =
P(1/2,%x?) for x > 0.

There is also a close relation between erf(x) and the normal distribution
probability function

1 [ (t— m)z)
UTPN(m,v,x) = dtexp| ——— 14
(movox) = o= [ avep (157 (14)
which is a built-in function of the HP49. With
2 J o P
— | dtexp(—t7) =1 (15)
VT Jo
one finds immediately
1
erf(x) =1—2. UTPN(0, E’X) . (16)

*

ERF computes the error function erf(x) for real arguments x. The algo-
rithm implements (16) which gives very accurate results 1. ERF does check
the number and the type of its argument and it is called according to

2: ; 2:
1:x ERF 1: erf(x)

*

Table 7 compares the results of ERF(x) and GAMP(1/2,%x?) to corre-
sponding values that are taken from [4].

4. THE (INCOMPLETE) BETA FUNCTION

The Beta function B(z,w) is defined as

1
B(a, b) :J At 11— 1)° ! fora,b >0 (17)
0

!Thanks to Sascha Haffner for pointing this out to me.
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which implies the symmetry B(a,b) = B(b, a). Computationally useful is
the relation

I'la)-T'(b)
B(a,b) = ———— 18
which allows efficient calculation of B(a,b) via the Gamma function TI.
Closely related to B(a,b) is the incomplete Beta function
1 x _ _
Ix(a,b):mjodtt“ M—9* fora,b>00<x<1  (19)

This is a function of three arguments, x is usually written as index. Like the
incomplete Gamma function, the incomplete Beta function can be related to
a number of other special functions, including the hypergeometric function,
the F-distribution and the Student t-distribution.

e The Student t-distribution probability function A(t,v) is defined as

follows:
Altv) = — (1Y o 0<t< 20
W= zargl o (+F)  osts= @
Assume that X is a normal distributed random variable with mean zero
and variance unity, and that x? follows an independent chi-square dis-
tribution with v degrees of freedom. The distribution of the quantity
X/ \/xz—v is called Student’s t-distribution with v degrees of freedom.
A(t,v) as defined in (20) gives the probability that |X/ \/@| will by
chance be less than t.
This probability function A(t,v) has a simple relation to the incom-

plete Beta function:

(21)

1
=) where x =

v
A(t,’V) = 1 - IX(E) 2

v +t2

*

The routines BETA and IBETA calculate B(a, b) and I (a, b) respectively.
They do check the number and the type of their arguments. It is tested
whether a,b > 0 and IBETA checks in addition whether 0 < x < 1. The
algorithm of BETA rests on (18) and the algorithm of IBETA is taken from

[3]-

2:a , 2:
1:b BETA 1: B(a,b)

—
IBETA :
1:x 1: Ix(a,b)
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The accuracy of BETA is essentially determined by the accuracy of the
built-in Gamma function. The tables 8, 9, 10 and 11 are meant to give an
idea on the accuracy of IBETA.

5. ASSOCIATED LEGENDRE POLYNOMIALS

The Legendre polynomials P,,(x),n € N can be defined as

Pal) = &2y 22
n(x)—mw(x -1 (22)
which gives
1
Po(x) =1 , Pi(x)=x and Pz(x):§(32—1). (23)

These ’ordinary’ Legendre polynomials may be used to define the associated
Legendre polynomials Py,(x) for positive m € N

m

Pum(x) = (=1)™(1 =) F - P1(x) (24)
and it can be shown that forme Z, m <0
m (L= |m[)!
Punx) = ()™ LT ), (25)

For every fixed m these associated Legendre polynomials Py, (x) form an
orthogonal basis for functions on the interval ] —1,1[ 2. That is, a function
on [—1,1] can be decomposed as follows

o
g(x) =) g"MPi(x) 0<x <1 (26)
1=0
for every fixed m € Z satisfying |[m| < 1. The coefficients are just numbers
and can be extracted by using the orthogonality relation

2 (1+m)!

1
Prm(x)Ppn(x) = =205,
| axPumtaPinln) = s

(27)

*

The routine PLM computes the associated Legendre polynomials Py (x)
for real x. Number and type of the arguments are checked and it is tested
whether /m| < 1. PLM is called according to the stack diagram

3:1 3:
2:m m’ 2:
1:x 1: Pun(x)

*
The accuracy of PLM can be read off from the tables 12 and 13.

2To be more precise: the Pim(x) form an orthogonal basis for the space L,(] —1,1[),
i.e. for the space of functions | — 1, 1[— R that are square integrable.



6. SPHERICAL HARMONICS

The spherical harmonics Y1,,,(0, ¢) are defined in terms of the associated
Legendre polynomials Py (x)

2L+ 1 (1—m)!

Ylm(e)d)) = 47t m

Pim(cos(0)) exp(imd) (28)
where L € N and m € Z,/m| < L. These functions do arise in solving the
Laplace equation in spherical coordinates, see e.g. [1].

The set of functions {Yi, |l € N,m € Z,/m| < 1} forms an orthogonal

basis for functions on the sphere. That is, a function on the sphere can be
decomposed as

00 1
f6,p) =) > f™Yin(6,¢) (29)

1=0 m=-1

where the coefficients f'™ are numbers, which may be called the components
of the function f in the basis {Y1,,}. These coefficients/components f'™ can
be extracted by using the orthogonality relation

27 T
L dd L 40 5in(0) 1m0, §)Yim(0, ) = S11/Srmm (30)

where Y1/ (0, ¢) denotes the complex conjugate of Yy (0, $).

The routine YLM computes Y (0, ¢) for real 8, ¢ 3. The number and
the type of the arguments are checked and it is tested whether jm| < 1. YILM
is called according to the stack diagram

YLM

—_ N W A
S @3 —
—_ N W A

: Ylm(6> d))

*

The algorithm of YLM rests on the corresponding algorithm for the compu-

tation of Py, and it is therefore essentially as accurate as PLM.

®Note that the result of YLM depends on the angle measure RAD/DEG/GRAD



REFERENCES

[1] J.D. Jackson, 'Classical Electrodynamics’, 2nd edition, John Wiley, 1975

[2] G.N. Watson, 'A Treatise on the Theory of Bessel Functions’, Cambridge Univ. Press,
1944

[3] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, 'Numerical Recipes in
C’, 2nd edition, Cambridge Univ. Press, 1992

[4] M. Abramowitz, I. Stegun, 'Handbook of Mathematical Functions’, Dover, 1972

[6] Mathematica 4,V4.0.1.0



10

2

=0.01

APPENDIX A. TABLES

X Jo(x) , [4] BESJ(0,x)

0.1 0.997501562066 0.9975015647
1.5 0.511827671736 0.5118276712
5.0 -0.1775967713 -0.177596774
10.0 -0.2459357644 -0.24593576438

TABLE 1. Results of BESJ(0,x) compared to values of Jy(x)

which are taken from [4]

x Jilx), [4] BES](1,x)

0.1 0.0499375260 0.04993752604
1.5 0.5579365079 0.55793650789
5.0 -0.3275791376 -0.3275791386
10.0 0.0434727462 0.04347274634

TABLE 2. Results of BESJ(1,x) compared to values of J;(x)

which are taken from [4]

x J2(x), [4] BESJ(2,x)

0.1 0.0012489587 0.00124895866
1.5 0.2320876721 0.23208767218
5.0 0.0465651163 0.0465651187
10.0 0.2546303137 0.25463031365

TABLE 3. Results of BESJ(2,x) compared to values of J»(x)

which are taken from [4]

1-P(v/2,x*/2), [4]

1— GAMP(v/2,%x%/2)

B W N R X

0.92034
0.99501
0.99973
0.99999

0.920344325448
0.995012479193
0.999734834941
0.999987541589

TABLE 4. Results of 1 — GAMP(v/2,%2%/2) for x* = 0.01
compared to values of 1 —P(v/2,x?/2) which are taken from
[4]. It would be nice, if somebody could give me a hint as
to where one can find more accurate values of P(a,x) than

those in the 2nd column.



1— GAMP(v/2,x%/2)

0.138010745551
0.332871086081
0.820835969911
0.994564706554
0.999944440127

TABLE 5. Results of 1 —GAMP(v/2,%%/2) for x* = 2.2 com-
pared to values of 1 — P(v/2,x?/2) which are taken from [4]

1— GAMP(v/2,%x%/2)

0.025347316063
0.082084998624
0.415880214401
0.891178020473
0.992126411423
0.999722647909

TABLE 6. Results of 1—GAMP(v/2,x?/2) for x> = 5.0 com-
pared to values of 1 — P(v/2,x?/2) which are taken from [4]

ERF(x)

GAMP(1/2,%x2)

X

v 1—P(v/2,%%/2), [4]
1 0.13801
2 0.33287
5 0.82084
10 0.99457
15 0.99994
x> =5.0

v 1—P(v/2,%%/2), [4]
1 0.02535
2 0.08209
5 0.41588
10 0.89118
15 0.99213
20 0.99972
X erf(x) , [4]
0.01 0.0112834156
0.02 0.0225645747
0.1 0.1124629160
0.5 0.5204998778
1.0 0.8427007929
1.5 0.9661051465

0.011283415556
0.022564574692
0.112462916018
0.520499877814
0.84270079295

0.966105146475

0.0112834155557
0.0225645746915
0.112462915998
0.520499876065
0.842700790023
0.966105149549

TABLE 7. Results of ERF(x) and GAMP(1/2,x?) compared

to values of erf(x) which are taken from [4]

11



12

Betala,0.1,0.1] , [5]

IBETA(a,0.1,0.1)

a “Betal0.1,0.1]_

0.1 0.406385 0.406385093797

0.3 0.133066 0.133066319903

1.0 0.0104807 0.0104807417889

2.0 0.000585549 0.000585549211572
TABLE 8. Results of IBETA(x,0.1,0.1) compared to corre-
sponding results, calculated with [5]. These tables for the
incomplete Beta function are not really meant to measure
the accuracy of IBETA, since they compare quite probably
with a somewhat different implementation of the same al-
gorithm. - I'm still looking for accurate values to compare
with.

a Botale i L Is) IBETA(a,0.1,0.5)

0.1 0.5 0.50000001138

0.3 0.242049 0.24204906039

1.0 0.066967 0.0669670062254

2.0 0.0203154 0.0203153584729
TABLE 9. Results of IBETA(x,0.1,0.5) compared to corre-
sponding results, calculated with [5].

a Potale S 18] IBETA(a,1,0.1)

0.1 0.794328 0.794328234725

0.3 0.501187 0.501187233629

1.0 0.1 1

2.0 0.01 0.01
TABLE 10. Results of IBETA(x,1,0.1) compared to corre-
sponding results, calculated with [5].

a Betale. 2 L8] TBETA(a,1,0.5)

0.1 0.933033 0.933032993775

0.3 0.812252 0.81225240231

1.0 0.5 0.5

2.0 0.25 0.25

TABLE 11. Results of IBETA(x,1,0.5) compared to corre-

sponding results, calculated with [5].



X P31 (X) PLM(3, 1 , X)
0.0 1.5 1.5
0.1 1.41785709788 1.41785709788
0.3 0.786999841172 0.78699984117
0.5 -0.32475952642 -0.324759526425
0.7 -1.565326068321 -1.5532606832
0.9 -1.99419626667 -1.99419626668
1.0 0.0 0.0
TABLE 12. Results of PLM(3,1,x) compared to the direct
evaluation of P31(x) = —3v1 —xZ(—1 + 5x?).
X P74(x) PLM(7,4,x)
0.0 0.0 0.0
0.1 -487.3326'7275 -487.332672753
0.3 -787.64110425 -787.641104247
0.5 121.81640625 121.81640625
0.7 1063.02024675 1063.020246'75
0.9 423.85560525 423.85560525
1.0 0.0 0.0

TABLE

13. Results of PLM(7,4,x) compared to the direct
evaluation of P74(x) = @(—33( +19%3 — 29> + 13x7).
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